
الفصل الثاني

الألكــانــات Alkanes

2.1 تصنیف الهیدروکربونات Classes of Hydrocarbons

اليفاتية Aliphatic ار وماتية (عطرية) Aromatic

الألكانات: هي هيدروكر بونات جميع روابطها أحادية

اليفاتية

Aliphatic

الكانات

Alkanes

الألكينات: هيدروكر بونات تحتوي على رابطة ثنائية بين ذرتي كربون بين ذرتي كربون

اليفاتية

Aliphatic

الألكينات Alkenes

$$H$$
 $C = C$
 H

الألكاينات: هيدروكربونات تحتوي على على رابطة ثلاثية بين ذرتي كربون C≡C

اليفاتية

Aliphatic

الألكاينات

Alkynes HC≡CH

الهيدروكربونات الأروماتية: هي المركبات التي تحتوي على الحلقة البنزينية

H Aromatic.

H H

2.2 المواقع الفعالة في الهيدروكربونات Reactive Sites in Hydrocarbons

المجموعة الوظيفية Functional Group

هي وحدة بنائية مسؤولة عن السلوك المميز للجزيئء تحت ظروف مجموعة من التفاعلات

الألكانات Alkanes

$$R$$
— H \longrightarrow R — X

•المجموعة الوظيفية هنا هي ذرة الهيدروجين •التفاعلات في الألكانات من نوع الإحلال محل •حيث تستبدل ذرة هيدروجين بذرة أخرى أو بمجموعة أخرى

الألكائات Alkanes R—H — X2 R—X

المجموعة الوظيفية هنا هي ذرة الهيدروجين
 التفاعلات في الألكانات من نوع الإحلال محل
 حيث تستبدل ذرة هيدروجين بذرة أخرى أوبمجموعة أخرى

المجموعات الوظيفية في الهيدر وكربونات

الهيدروجين	الألكانات	Alkanes
RH		
الرابطة الثنائية	الألكينات	Alkenes
الرابطة الثلاثية	(لألكايثات	Alkynes
الأروماتية ArH	الحلقة البنزينية	Aromatics

2.3 المجموعات الوظيفية الرئيسية The Key Functional Groups

العائلات الرئيسية للمركبات العضوية ومجموعاتها الوظيفية

ROH : Alcohols

(X= F ,Cl ,Br,) : Alkyl Halide هاليدات الألكيل

RNH₂ أمينات Amines الأمينات

: أمين ثانوي R₂NH

: أمين ثالثي R₃N

العائلات الرئيسية للمركبات العضوية ومجموعاتها الوظيفية

ألإيبوكسيدات

Epoxides

ROR'

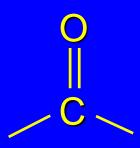
الإيثرات

Ethers

RC≣N

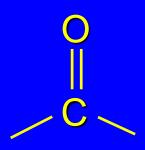
النيترايل السيانيد)

Nitriles

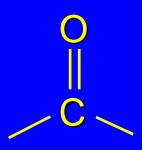

RNO₂

Nitroalkanes نيترو الكانات

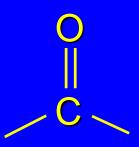
RSH


الثيو لات

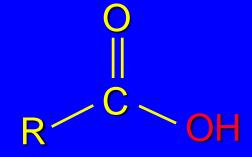
Thiols


مجموعة الكربونيل Carbonyl group R

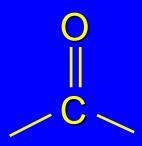
Acyl group

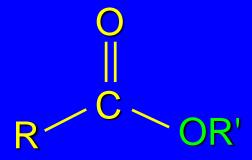

مجموعة الكربونيل Carbonyl group

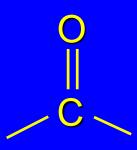
الألدهيدات Aldehydes



مجموعة الكربونيل Carbonyl group


الكيتونات Ketones


مجموعة الكربونيل Carbonyl group


الأحماض الكربوكسيلية Carboxylic acid

مجموعة الكربونيل Carbonyl group

الإسترات Ester

مجموعة الكربونيل Carbonyl group

$$\frac{O}{C}$$
 R
 NH_2

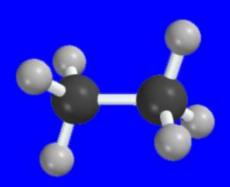
الأميدات Amide C_nH_{2n+2}

2.4 مقدمة الألكانات الميثان والإيثان والبروبان Introduction to Alkanes: Methane, Ethane, and Propane

الألكانات البسيطة

الميثان Methane (CH₄)

CH₄


الإيثان Ethane (C₂H₆)

CH₃CH₃

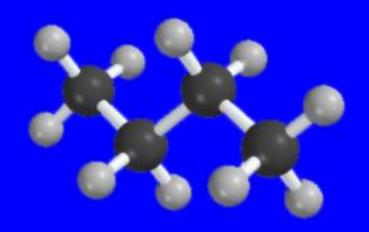
Propane (C₃H₈) البر وبان

CH₃CH₂CH₃

bp -160°C

bp -89°C

bp -42°C


 C_4H_{10}

2.5 متشكلات الألكانات البيوتان

Isomeric Alkanes: The Butanes

n-Butane ع-بيوتان أيزوبيوتان أيزوبيوتان

CH₃CH₂CH₂CH₃ (CH₃)₃CH

bp -0.4°C

bp -10.2°C

2.6 الألكانات الكبيرة Higher n-Alkanes CH₃CH₂CH₂CH₂CH₃ *n*-Pentane ع-بنتان

CH₃CH₂CH₂CH₂CH₃ *n*-Hexane ع- هکسان

CH₃CH₂CH₂CH₂CH₂CH₂CH₃ *n*-Heptane ع-هبتان

2.7 متشکلات بنــتــان The C_5H_{12} Isomers

 C_5H_{12}

CH₃CH₂CH₂CH₂CH₃

<u>م- بنتان n-Pentane</u>

(CH₃)₂CHCH₂CH₃

ایزوبنتان Isopentane

X

 $(CH_3)_4C$

Neopentane

نيوبنتان

Table 2.3 عد البناءات لمتشاكلات الإلكانات

CH ₄	1	C ₈ H ₁₈	18
C_2H_6	1	C_9H_{20}	35
C_3H_8	1	C ₁₀ H ₂₂	75
C ₄ H ₁₀	2	C ₁₅ H ₃₂	4,347
C_5H_{12}	3	C ₂₀ H ₄₂	366,319
C ₆ H ₁₄	5	C ₄₀ H ₈₂	62,491,178,805,831
C ₇ H ₁₆	9		

2.8 تسمية الألكانات الغير متفرعة بالطريقة النظامية (IUPAC)

Table 2.4 الكانات الغير متفرعة بطريقة JUPAC

Methane الميثان CH₄

Ethane الإيثان CH₃CH₃

Propane البروبان CH₃CH₂CH₃

Butane البيوتان $CH_3CH_2CH_2CH_3$

Table 2.4 الألكانات الغير متفرعة بطريقة

Number of carbons	Name	Structure
بنتان 5	pentane	CH ₃ (CH ₂) ₃ CH ₃
ھكسان 6	hexane	CH ₃ (CH ₂) ₄ CH ₃
هبتان 7	heptane	CH ₃ (CH ₂) ₅ CH ₃
أوكتان 8	octane	CH ₃ (CH ₂) ₆ CH ₃
نونان 9	nonane	CH ₃ (CH ₂) ₇ CH ₃
دیکان 10	decane	CH ₃ (CH ₂) ₈ CH ₃

د.مهند عامـر كلية تربية عبري 2005/2006

Table 2.4 النات الغير متفرعة بطريقة JUPAC أسماء الألكانات الغير متفرعة بطريقة

Number	of carbons	Name	Structure
11	اندیکان	undecane	CH ₃ (CH ₂) ₉ CH ₃
12	دو دیکان	dodecane	CH ₃ (CH ₂) ₁₀ CH ₃
13	ترايديكان	tridecane	CH ₃ (CH ₂) ₁₁ CH ₃
14	تترادیکان	tetradecane	CH ₃ (CH ₂) ₁₂ CH ₃
15	بنتاديكان	pentadecane	CH ₃ (CH ₂) ₇ CH ₃
16	هکسادیکان	hexadecane	CH ₃ (CH ₂) ₈ CH ₃

د.مهند عامـر كلية تربية عبري 2005/2006

Table 2.4 IUPAC أسماء الألكائات الغير متفرعة بطريقة

Number	of carbons	Name	Structure
17	هبتادیکان	heptadecane	CH ₃ (CH ₂) ₁₅ CH ₃
18	اوكتاديكان	octadecane	CH ₃ (CH ₂) ₁₆ CH ₃
19	نوناديكان	nonadecane	CH ₃ (CH ₂) ₁₇ CH ₃
20	ایکوسان	icosane	CH ₃ (CH ₂) ₁₈ CH ₃
25	بنتاكوسان	pentacosane	CH ₃ (CH ₂) ₂₂ CH ₃
30	تر ایاکو نتان	triacontane	CH ₃ (CH ₂) ₂₈ CH ₃

د.مهند عامسر كلية تربية عبري 2005/2006

Intro to Organic

التسمية

الملحق -الأصل - بادئة •

العائلة عدد ذرات الكربون الجموعات الجانبية

$$\begin{array}{c} \text{CH}_2 \\ -\text{CH}_3 \\ \\ \text{CH}_3 \\ -\text{CH}_2 \\ -\text{CH}_2 \\ -\text{CH}_3 \\ \end{array}$$

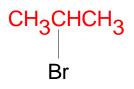
• 3-Methylhexane

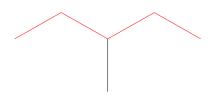
أوجد الأصل

• أوجد أطول سلسلة متصلة من ذرات الكربون.

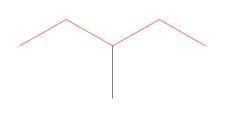
جدول بالجذور للأصل

C-میثان methane • میث ایثان ethane C-C-• ایث C-C-C-بروبانpropane بروب بيوتان butane C-C-C-C-• بيوت C-C-C-C-بنتان pentane • بنت C-C-C-C-Chexane هکسان هکس C-C-C-C-C-Cheptane هبتان • هبت او کتان octane او کت C-C-C-C-C-C-C-

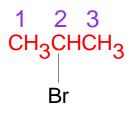

أوجد الأصل

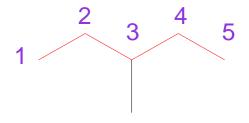

• أوجد أطول سلسلة متصلة من ذرات الكربون.

رقِم الأصل

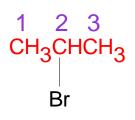

• ابدأ بالترقيم من النهاية الأقرب للمجموعة المتفرعة

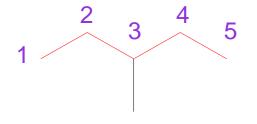
رقم الأصل

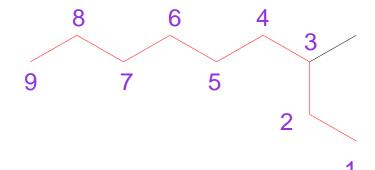

• ابدأ بالترقيم من النهاية الأقرب للمجموعة المتفرعة



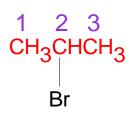
رقم الأصل

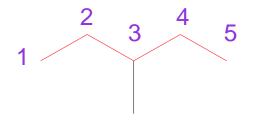

• ابدأ بالترقيم من النهاية الأقرب للمجموعة المتفرعة

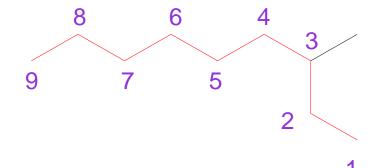


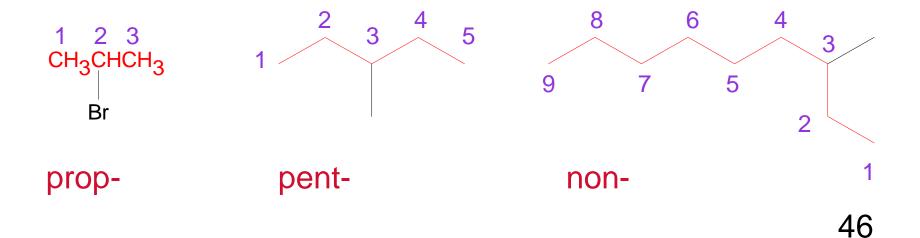


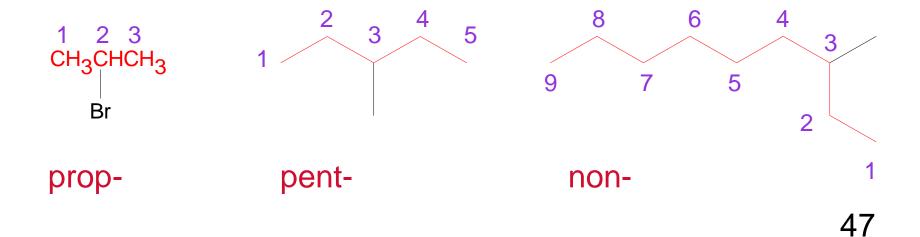
رقم الأصل


• ابدأ بالترقيم من النهاية الأقرب للمجموعة المتفرعة

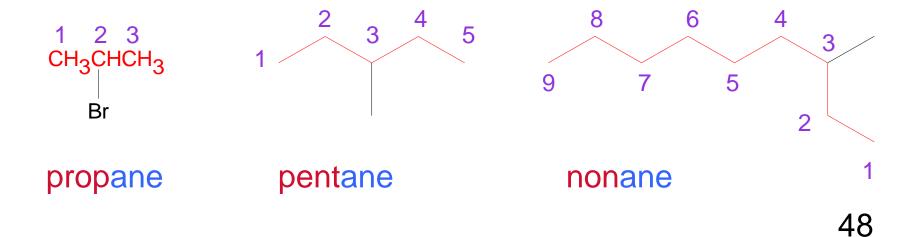





• الجذر الأسم الأصل يعبر عن عدد ذرات الكربون في سلسلة الأصل الأصل

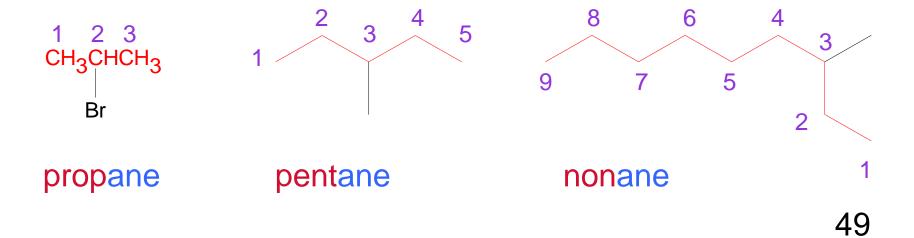


• الجذر الأسم الأصل يعبر عن عدد ذرات الكربون في سلسلة الأصل الأصل



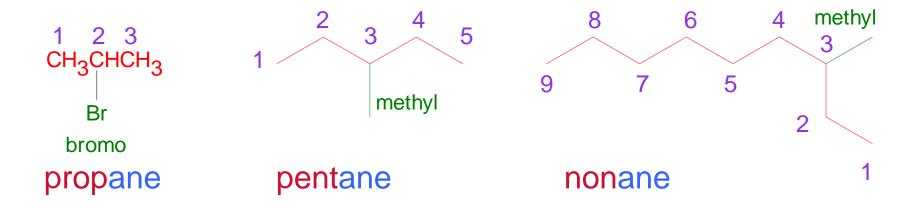
د.مهند عامـر کلية عبري 2005/2006

- الجذر الأسم الأصل يعبر عن عدد ذرات الكربون في سلسلة الأصل الأصل
 - الكان : ane- الملحق



- الجذر الأسم الأصل يعبر عن عدد ذرات الكربون في سلسلة الأصل الأصل
 - الكان : ane- الملحق

تسمية المجموعات الجانبية (المتفرعة)


• الهالوجينات : F - fluoro, Cl - chloro, Br - bromo, and I - iodo

50

تسمية المجموعات الجانبية (المتفرعة)

- F fluoro, Cl chloro, Br bromo, : الهالوجينات and I iodo
 - مجموعات الألكيل (Alkyl groups)

تسمية المجموعات الجانبية (المتفرعة)

- الهالوجينات : F fluoro, Cl chloro, Br bromo, and I - iodo
 - مجموعات الألكيل (Alkyl groups)

تسمية المجموعات الجانبية (المتفرعة)

- اذا تكررت البدائل أكثر من مرة واحدة فنقوم بالآتي:
 - كل بديل يمثل برقم منفصل لموقعه في المركب
 - تستخدم بادئات لتظهر عدد مرات تكرارها
- مثل (ثنائي , ثلاثي , رباعي ...) di , tri, tetra
 - الأرقام يفصل بينها بالآتي ","
 - الأرقام والأسماء يفصل بينها بالآتي "-".
- ترتب المجاميع حسب الترتيب الأبجدي الإنجليزي مسبوقة برقمها
 - مثال : مثال •

الأمثلة

(a)
$$\mathrm{CH_3CH_2CH_2CHCH_3}$$
 $\mathrm{CH_2CH_3}$

$$\begin{array}{c} \text{(b)} & \text{CH}_2\text{Br} \\ -\text{CH}_3\text{---}\text{CH}_2\text{Br} \\ -\text{CH}_3 \end{array}$$

Intro to Organic

الأمثلة

(a)
$$\mathrm{CH_3CH_2CH_2CH_2CHCH_3}$$
 $\mathrm{CH_2CH_3}$

3-methylheptane

$$\begin{array}{c} \text{(b)} & \text{CH}_2\text{Br} \\ \text{CH}_3 - \text{C} - \text{CH}_2\text{Br} \\ \text{CH}_3 \end{array}$$

Intro to Organic

الأمثلة

(C) BI

3-methylheptane

(b)
$$CH_2Br$$
 CH_3 CH_2Br CH_3

(d) C

1,3-dibromo-2,2-dimethylpropane

Intro to Organic


الأمثلة

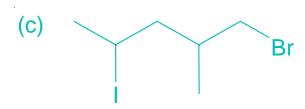
(a) $CH_3CH_2CH_2CH_2CHCH_3$ CH_2CH_3

3-methylheptane

$$\begin{array}{c} \text{(b)} & \text{CH}_2\text{Br} \\ \text{CH}_3 & \text{CH}_2\text{Br} \\ \text{CH}_3 & \text{CH}_3 \end{array}$$

1,3-dibromo-2,2-dimethylpropane

1-bromo-4-iodo-2-methylpentane


الأمثلة

(a) $CH_3CH_2CH_2CH_2CHCH_3$ CH_2CH_3

3-methylheptane

$$\begin{array}{c} \text{(b)} & \text{CH}_2\text{Br} \\ & \text{CH}_3 - \text{C} - \text{CH}_2\text{Br} \\ & \text{CH}_3 \end{array}$$

1,3-dibromo-2,2-dimethylpropane

1-bromo-4-iodo-2-methylpentane

1-chloro-4-ethyl-5-methylhexane

Intro to Organic

سؤال1

أوجد الأصل: أطول سلسلة متصلة

Intro to Organic

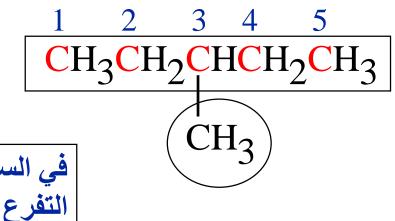
سوال1

اوجد الأصل: أطول سلسلة متصلة

CH3CH2CHCH2CH3

CH3

CH3

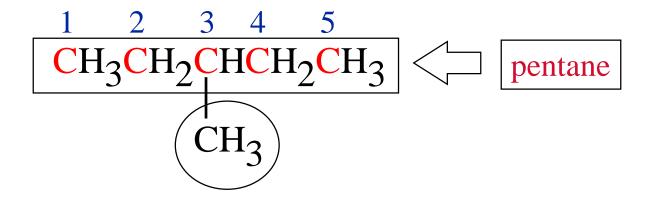

CH3

CH3

Intro to Organic

سوال1

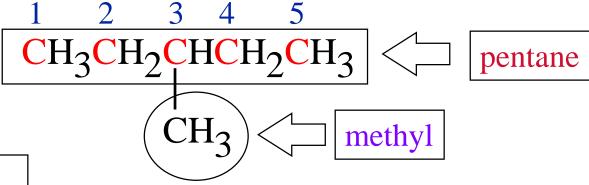
رقم الأصل : ابدأ من النهاية الأقرب للتفرع



في السؤال التالي التفرع يتوسط النهايتين فالترقيم من ايها لا يهم

Intro to Organic

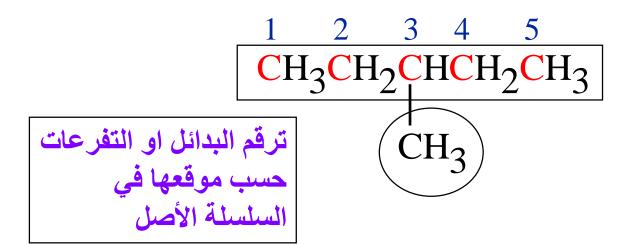
سوال1


سم الأصل

Intro to Organic

سؤال1

سم التفرعات


البدائل او التفرعات توضع قبل اسم الأصل

methylpentane

Intro to Organic

سوال1

سم التفرعات

3-methylpentane

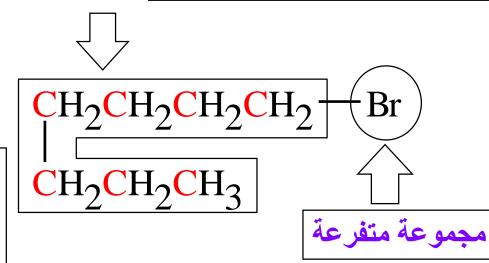
Intro to Organic

سؤال1

CH₃CH₂CHCH₂CH₃
CH₃

3-methylpentane

سؤال2


أوجد الأصل : هنا السلسلة الأطول.

السلسلة الأطول ليست دائما هي المستقيمة على خط واحد وانما المتصلة CH₂CH₂CH₂CH₂—Br | CH₂CH₂CH₃

Intro to Organic

سوال2

أوجد الأصل: هنا السلسلة الأطول.

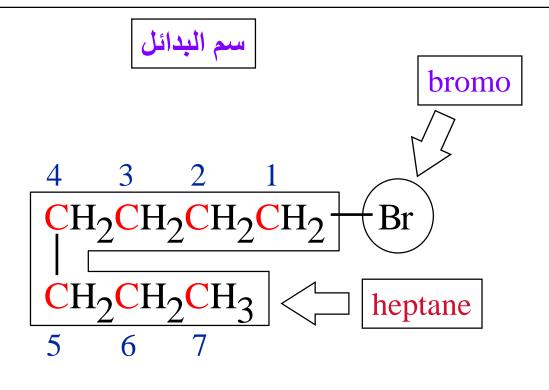
• السلسلة الأطول ليست دائما هي المستقيمة على خطواحد وانما المتصلة

Intro to Organic

سؤال2

• رقم الأصل: ابدأ من النهاية الأقرب للتفرع

ابدا من النهاية المتصلة بالبرومين

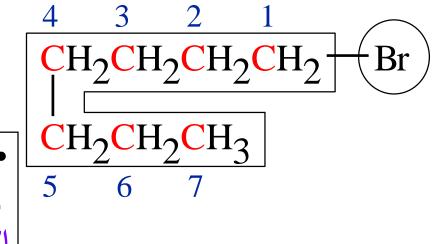

Intro to Organic

سوال2

سم الأصل

Intro to Organic

سؤال2


- •البدائل او التفرعات
- •توضع قبل اسم الأصل

bromoheptane

Intro to Organic

سؤال2

•سم البدائل

| • ترقم البدائل او التفرعات حسب موقعها في السلسلة الأصل

1-bromoheptane

Intro to Organic

سؤال2

CH₂CH₂CH₂CH₂—Br CH₂CH₂CH₃

1-bromoheptane

Intro to Organic

سىؤال3

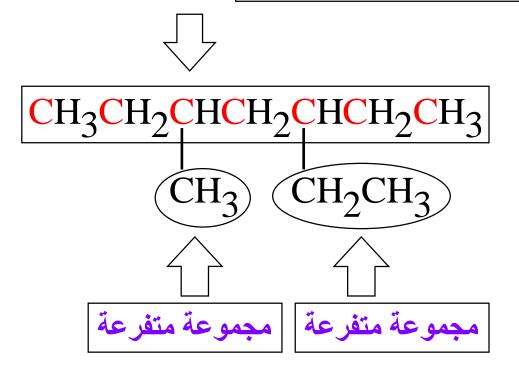
•أوجد الأصل: أطول سلسلة متصلة

Intro to Organic

سىؤال3

•أوجد الأصل: هنا السلسلة الأطول

CH₃CH₂CHCH₂CHCH₂CHCH₃

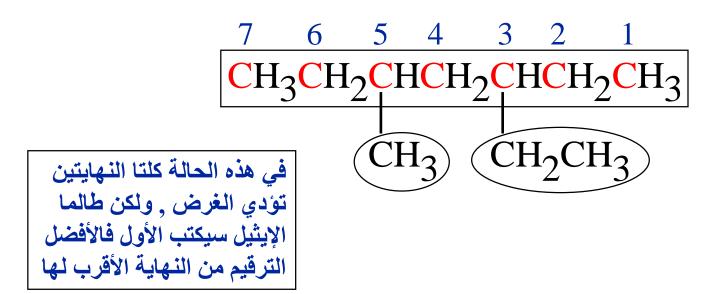

CH₃ CH₂CHCH₂CH₃

في هذه الحالة أي من السلسلتين تعطي نفس طول السلسلة و نفس موقع التفرع ولذلك لايهم أيهما

Intro to Organic

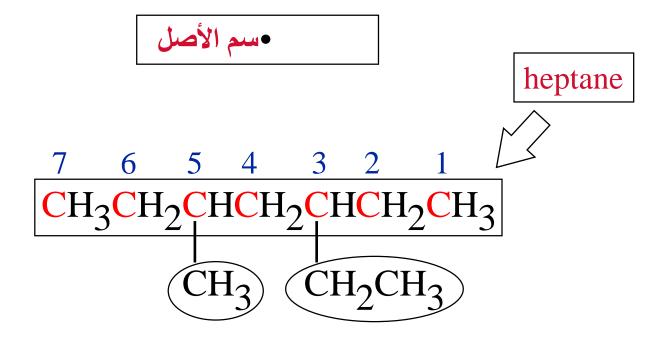
سىؤال3

•أوجد الأصل: هنا السلسلة الأطول



74

Intro to Organic


سىؤال3

• رقم الأصل: ابدأ من النهاية الأقرب للتفرع

Intro to Organic

سوال3

Intro to Organic

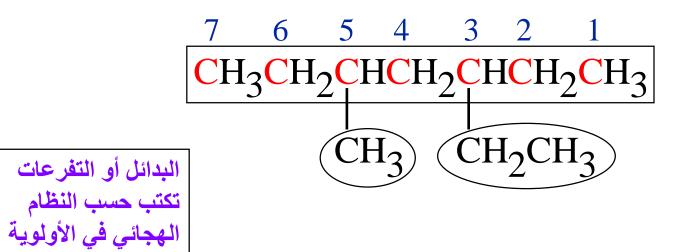
سؤال3

•سم البدائل heptane 3 2 CH₃CH₂CHCH₂CHCH₂CH₃ عدد 2 كربون كربون 1

77

Intro to Organic

سؤال3

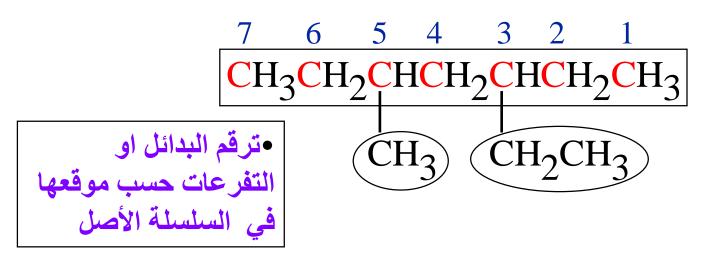

•سم البدائل heptane 3 2 methyl ethyl

78

Intro to Organic

سوال3

•سم البدائل



ethyl methylheptane

Intro to Organic

سؤال3

•سم البدائل

3-ethyl-5-methylheptane

Intro to Organic

سؤال3

3-ethyl-5-methylheptane

(or 5-ethyl-3-methylheptane)

81

رسم المركب

- ارسم سلسلة الكربون للأصل في المركب
 - رقم ذرات الكربون في السلسلة.
- اضف البدائل أو المجموعات المتفرعة كل حسب رقمه
 - أضف ذرات الهيدروجين لبنية لويس أو المكثفة
- تذكر أن كل ذرة كربون تحتوي على أربع روابط فقط

Intro to Organic

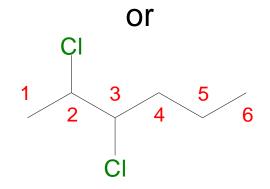
مثال

2,3-dichloro-4-methylhexane

Intro to Organic

مثال

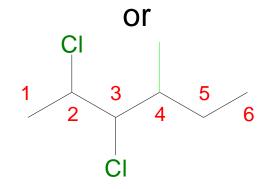
2,3-dichloro-4-methylhexane


or

Intro to Organic

مثال

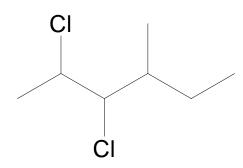
2,3-dichloro-4-methylhexane



Intro to Organic

مثال

2,3-dichloro-4-methylhexane


املأ ذرات الهيدروجين

Intro to Organic

2,3-dichloro-4-methylhexane

$$\mathsf{CI} \qquad \mathsf{CH}_3 \ | \ \mathsf{H}_3 \mathsf{C} - \mathsf{CH} - \mathsf{CH} - \mathsf{CH} - \mathsf{CH}_2 - \mathsf{CH}_3 \ | \ \mathsf{CI}$$

المتشكلات البنائية

- هي مركبات مختلفة تشترك في أن لها نفس الصيغة الجزيئية ولكن :
 - تختلف في طريقة ترابط الذرات مع بعضها (البناء الهيكلي)
 - أو
 - تختلف في طريقة ترابط الذرات (المجموعات الوظيفية)
 - : يمكن ان يكون بالمتشكلين التاليين C_4H_{10}
 - CH₃CH₂CH₂CH₃ Butane •
 - CH₃CH(CH₃)CH₃ Isobutane •

2-methylpropane.

9 Butane •

$$CH_3$$
 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3

$$^{\mathrm{CH_3}}_{-}$$
 $^{\mathrm{CH}}_{-}$ $^{\mathrm{CH}}_{3}$

dimethyl ether.
• Ethanol •

$$CH_3$$
— CH_2 — OH

$$CH_3 - O - CH_3$$

Intro to Organic

نهاية القسم 2

- في نهاية هذا القسم يجب عليك الآن معرفة التالي
 - كتابة الصيغة المكثفة والبنائية والبنية الخطية
- تسمية وكتابة الصيغة البنائية للمركبات الهيدر وكربونية المشبعة

•

• رسم المتشكلات البنائية للألكانات

2.10 مجموعات الألكيل

مجموعة الميثيل والإيثيل Methyl and Ethyl groups

Methyl
$$H - C - CH_3 -$$

مجموعة الألكيل الغير متفرعة

R—H

وذلك من خلال استبدال احرف ane- الى yl- التحويلها الى مجموعة الكيل

مجموعة الألكيل الغير متفرعة

R—H

مجموعة الألكيل الغير متفرعة

CH₃(CH₂)₄CH₂ Hexyl

 $CH_3(CH_2)_5CH_2$ Heptyl

 $CH_3(CH_2)_{16}CH_2$ Octadecyl

مجموعات الألكيل للصيغة C₃H₇

مجموعات الألكيل للصيغة C3H7

Propyl

مجموعات الألكيل للصيغة C3H7

1-Methylethyl

مجموعات الألكيل للصيغة C₄H₉

Butyl

مجموعات الألكيل للصيغة C4H9

1-Methylpropyl

مجموعات الألكيل للصيغة C4H9

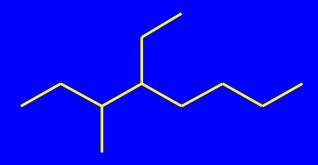
2-Methylpropyl

مجموعات الألكيل للصيغة C₄H₉

1,1-Dimethylethyl

tert-Butyl

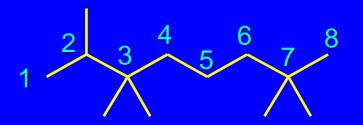
التصنيف: Tertiary alkyl group

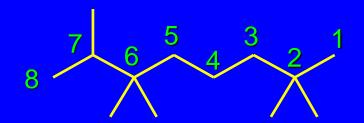

2.11 تسمية الألكانات الكبيرة المتفرعة

Octane

4-Ethyloctane

4-Ethyl-3-methyloctane

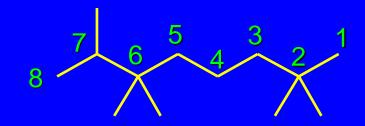

اكتب المجموعات المتفرعة على حسب التهجئة الإنجليزية.



4-Ethyl-3,5-dimethyloctane

اكتب المجموعات المتفرعة على حسب التهجئة الإنجليزية ويستثنى من ذلك (di,tri,tetra)

نقاط الخلاف



ما هو الاسم الصحيح برأيك ؟

2,3,3,7,7-Pentamethyloctane?

2,2,6,6,7-Pentamethyloctane?

First Point of Difference Rule

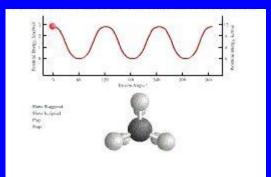
ما هو الاسم الصحيح برأيك ؟

2,2,6,6,7-Pentamethyloctane?

السلسلة ترقم بحيث تكون المجموعات المتفرعة بأصغر تسلسل رقمي

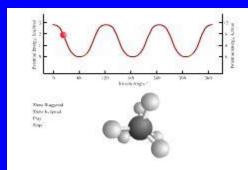
الهيئات في الأكانات

المجموعات المرتبطة برابطة ى يمكن ان تدور حول تلك الرابطة بالنسبة لبعضها البعض ويؤدي ذلك الى ترتيبات مختلفة للذرات في الفضاء وكل منها يعتبر هيئة conformation وعند دراسة تغير الطاقة لجزيئ تدور ذراته حول رابطة احادية تسمى تحليل الهيئة

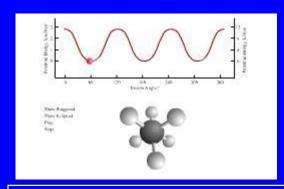

ينتج عدد النهائي من الهيئات نتيجة لهذا الدوران حول الرابطة C-C

الهيئات ثلاثة انواع: المتبادلة - المنكسفة - المائلة

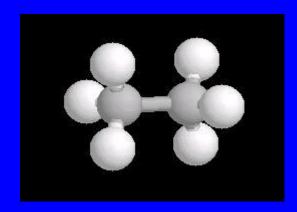
حاجز الطاقة (طاقة اللي) هنا قليلة وهي كافية لعمل التغيرات في الهيئات بكل سهولة


الهيئات في الإيثان

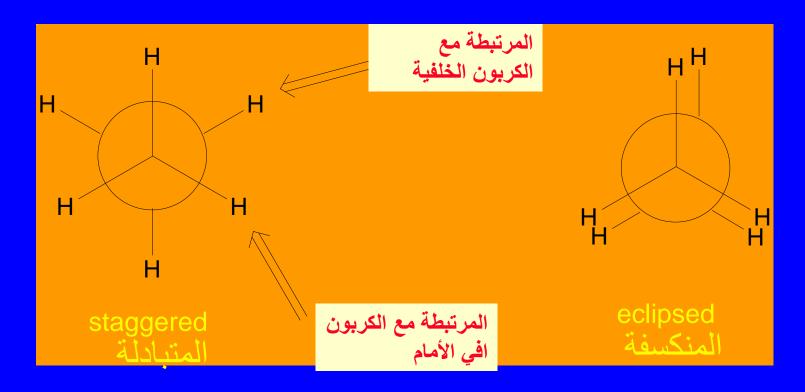
الهيئة المنكسفة



الطاقة العالية = تعنى أقل ثباتاً


الهيئة المائلة

0الهيئة المتبادلة



الطاقة المنخفضة = تعني أكثر ثباتاً

صيغة نيومان

ترسم كأنك تنظر من خلال الرابطة

د. مهند عامـر كلية تربية عبري 2005/2006

الهيئات المفضلة

الهيئة المتبادلة اكثر استقراراً من المنكسفة وذلك للتالي: تقليل الجهد الزاوي — يحدث تنافر بين الإلكترونات في روابط الهيئة المنكسفة فتتحول الى متبادلة . الهيئة المنكسفة فتتحول الى متبادلة . الأكثر استقراراً هو في الترتيب المتضاد دائماً

في حالة تواجد مجموعات كبيرة متضادة لبعضها في الهيئة التقليل من اجهاد التزاحم — يؤدي للتنافر بين المجموعات المتقاربة لبعضها

الهيئة الأكثر شيوعاً.

2.13 مصادر الألكانات والألكانات الحلقية والصفات الفيزيائية

Naphtha النافثا (bp 95-150 °C)

 $C_5 - C_{12}$

الكيروسين Kerosene الكيروسين (bp: 150-230 °C)

C₁₂-C₁₅

Light gasoline

الجازولين الخفيف

(bp: 25-95 °C)

النفط الخام

C₁₅-C₂₅

زيت الغاز Gas oil

(bp: 230-340 °C)

Refinery gas غاز

 C_1 - C_4

Residue

المتبقي

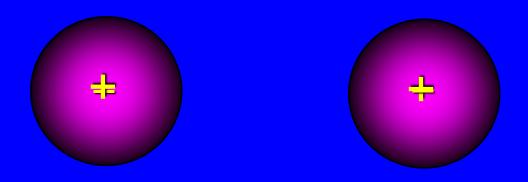
تكرير البترول Petroleum Refining

Cracking التكسير

تحويل المركبات ذات الوزن الجزيئي الكبير من الهيدر وكربونات الى مركبات مفيدة ذات وزن جزيئي صغير

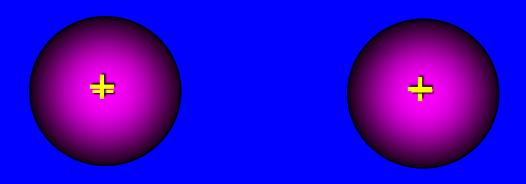
اعادة التشكيل Reforming

زيادة تفرعات السلسلة الهيدروكربونية - السلاسل المتفرعة تحترق بشكل افضل في محركات السيارات

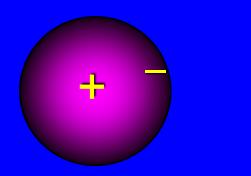

2.14 الصفات الفيزيائية للألكانات والألكانات الحلقية Physical Properties of Alkanes and Cycloalkanes

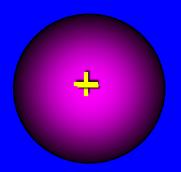
درجة الغليان للألكائات Boiling Points of Alkanes

الذي يتحكم هنا هو قوة التجاذب بين الجزيئات للألكان

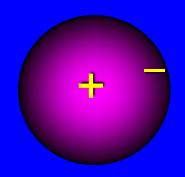

الألكانات غير قطبية = اذن فالقوى (القطبية-القطبية) (القطبية-الحثية) بين الجزيئات معدوم هنا . القوى الوحيدة هنا هي الحث القطبي مع الحث القطبي

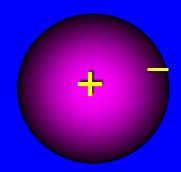
قوى تجانب (الحث القطبي ــالحث القطبي) Induced dipole-Induced dipole attractive forces


جزيئان غير قطبيان المركز الموجب والمركز السالب متقابلان لبعضهما البعض

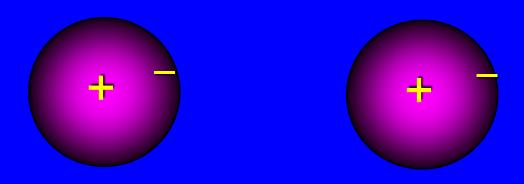

قوى تجاذب (الحث القطبي ــالحث القطبي) Induced dipole-Induced dipole attractive forces

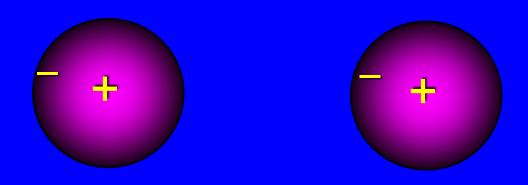
حركة الإلكترونات تخلق حالة قطبية لحظية في الجزيئ (اليسار)


قوى تجانب (الحث القطبي ــ الحث القطبي) Induced dipole-Induced dipole attractive forces



القطبية اللحظية في الجزيئ (اليسار) تحث الحالة القطبية في الجزيئ الأخر (اليمين)


قوى تجانب (الحث القطبي ــ الحث القطبي) Induced dipole-Induced dipole attractive forces


القطبية اللحظية في الجزيئ (اليسار) تحث الحالة القطبية في الجزيئ الأخر (اليمين)

قوى تجاذب (الحث القطبي ــ الحث القطبي) Induced dipole-Induced dipole attractive forces

النتيجة النهائية تكون قوة تجاذب صغيرة بين الجزيئين

قوى تجانب (الحث القطبي ــ الحث القطبي) Induced dipole-Induced dipole attractive forces

النتيجة النهائية تكون قوة تجاذب صغيرة بين الجزيئين

درجات الغليان Boiling Points

•تزداد بزيادة عدد ذرات الكربون = ازدياد الذرات تزداد معه الإاكترونات •تزداد فرص تكون قوى (الحث القطبي-الحث القطبي)

تقل مع التفرعات

الجزيئات المتفرعة اكثر ازدحاما مما يقلل مساحة السطح فتقل نقاط الإتصال بين الجزيئات

درجات الغليان Boiling Points

تزداد بزيادة عدد ذرات الكربون = ازدياد الذرات تزداد معه الإاكترونات تزداد فرص تكون قوى (الحث القطبي-الحث القطبي)

Heptane bp 98°C

Octane bp 125°C

Nonane bp 150°C

درجات الغليان Boiling Points

تقل مع التفرعات

الجزيئات المتفرعة اكثر أزدحاما مما يقلل مساحة السطح فتقل نقاط الإتصال بين الجزيئات

Octane: bp 125°C

2-Methylheptane: bp 118°C

2,2,3,3-Tetramethylbutane: bp 107°C

2.15 الصفات الكيميائية احتراق الألكانات

جميع الألكانات تحترق في الهواء مكونة ثاني اكسيد الكربون والماء

حرارة الإحتراق Heats of Combustion

* تزداد بازدیاد عدد ذرات الکربون عدد اکبر من مولات الأوکسیجین تستهلك تنتج عدد اکبر من مولات ثانی اکسید الکربون والماء